Skip to contents

Package info

IASDT.R IASDT.R-package
IASDT.R: Modelling the distribution of invasive alien plant species in Europe

Prepare species distribution data

GBIF_process() GBIF_download() GBIF_read_chunk() GBIF_species_data()
Process GBIF occurrence data for the IASDT
EASIN_process() EASIN_taxonomy() EASIN_download() EASIN_plot()
Process EASIN data for the IASDT
eLTER_process()
Process eLTER data for the IASDT
IAS_process() IAS_distribution() IAS_plot()
Process and map Invasive Alien Species (IAS) data for the IASDT
get_species_name()
Get species name or information of an IASDT species ID

Prepare abiotic data

CLC_process()
Process Corine Land Cover (CLC) data for the IASDT
CHELSA_variables
Detailed information on CHELSA climate variables
CHELSA_process() CHELSA_prepare() CHELSA_project()
Process CHELSA Climate Data for the IASDT
efforts_process() efforts_request() efforts_download() efforts_summarize() efforts_split() efforts_plot()
Process GBIF sampling effort data for the IASDT
railway_intensity()
Calculate railway intensity based on OpenStreetMap data
road_intensity()
Calculate road intensity per grid cell
river_length()
Calculate the length of rivers in each Strahler order per grid cell
bioreg_process()
Process biogeographical regions dataset

Modelling functions

Functions for preparing data, running the models, and postprocessing of model outputs

Data preparation

Prepare input data and scripts for fitting Hmsc-HPC on GPU

mod_CV_prepare()
Prepare spatial-block cross-validation folds for spatial analysis
prepare_knots()
Prepare knot locations for Hmsc GPP models
mod_prepare_HPC() mod_prepare_data()
Prepare initial models for model fitting with Hmsc-HPC
mod_SLURM() mod_SLURM_refit()
Prepare SLURM scripts for Hmsc-HPC model fitting
mod_fit_windows()
Fit Hmsc-HPC models on UFZ Windows Server
mod_CV_fit()
Prepare cross-validated Hmsc models for HPC fitting
install_hmsc_windows()
Install Hmsc-HPC in a python virtual environment on Windows
solve1() solve2() solve2vect() fast_pnorm() exp_neg_div()
helper C++ functions for fast matrix computations

Model postprocessing

Postprocessing model outputs, including checking for convergence, making spatial predictions, evaluation, and plotting.

coda_to_tibble()
Convert a Coda object to a tibble with specified parameter transformations
trim_hmsc()
Trim an Hmsc Model Object by Removing Specified Components
mod_get_posteriors()
Combines posteriors exported by Hmsc-HPC into an Hmsc object
mod_merge_chains() mod_merge_chains_CV()
Merge model chains into Hmsc and coda objects
mod_summary()
Summary of Hmsc model parameters
resp_curv_prepare_data() resp_curv_plot_species() resp_curv_plot_species_all() resp_curv_plot_SR()
Prepare and plot response curve data for Hmsc models
predict_latent_factor()
Draws samples from the conditional predictive distribution of latent factors
plot_latent_factor()
Plot spatial variation in site loadings of HMSC models
predict_hmsc()
Calculates predicted values from a fitted Hmsc model
predict_maps() predict_maps_CV()
Predict habitat suitability of Hmsc models
plot_prediction()
Plot species and level of invasion predictions as JPEG files using ggplot2
mod_postprocess_1_CPU() mod_prepare_TF() mod_postprocess_2_CPU() mod_postprocess_CV_1_CPU() mod_postprocess_CV_2_CPU()
Model pipeline for post-processing fitted Hmsc models
plot_evaluation()
Generate plots for the explanatory power of Hmsc models
mod_heatmap_beta() mod_heatmap_omega()
Heatmaps for the beta and omega parameters of the Hmsc model
convergence_plot() convergence_alpha() convergence_rho() convergence_Beta_ranges()
Plot model convergence of a selected model
convergence_plot_all()
Plot model convergence of multiple modelling alternatives
variance_partitioning_compute() variance_partitioning_plot()
Computes and visualise variance partitioning of Hmsc models
plot_gelman() plot_gelman_alpha() plot_gelman_beta() plot_gelman_omega() plot_gelman_rho()
Plot Gelman-Rubin-Brooks