Predict habitat suitability of Hmsc
models
Source: R/mod_predict_maps.R
, R/mod_predict_maps_CV.R
Predict_Maps.Rd
This package provides two functions for predicting habitat suitability of
Hmsc
models in the IASDT
framework. predict_maps generates current and
future habitat suitability maps (mean, sd, cov) from a full Hmsc model fit.
predict_maps_CV predicts and evaluates cross-validated Hmsc models for
current climate conditions. For more details, see the respective function
documentation and the details section below.
Usage
predict_maps(
path_model = NULL,
hab_abb = NULL,
env_file = ".env",
n_cores = 8L,
strategy = "multisession",
clamp_pred = TRUE,
fix_efforts = "q90",
fix_rivers = "q90",
pred_new_sites = TRUE,
use_TF = TRUE,
TF_environ = NULL,
TF_use_single = FALSE,
LF_n_cores = n_cores,
LF_check = FALSE,
LF_temp_cleanup = TRUE,
LF_only = FALSE,
LF_commands_only = FALSE,
temp_dir = "TEMP_Pred",
temp_cleanup = TRUE,
tar_predictions = TRUE,
CC_models = c("GFDL-ESM4", "IPSL-CM6A-LR", "MPI-ESM1-2-HR", "MRI-ESM2-0",
"UKESM1-0-LL"),
CC_scenario = c("ssp126", "ssp370", "ssp585")
)
predict_maps_CV(
model_dir = NULL,
CV_name = NULL,
CV_fold = NULL,
n_cores = 8L,
strategy = "multisession",
env_file = ".env",
use_TF = TRUE,
TF_environ = NULL,
TF_use_single = FALSE,
LF_n_cores = n_cores,
LF_check = FALSE,
LF_temp_cleanup = TRUE,
LF_only = FALSE,
LF_commands_only = FALSE,
temp_cleanup = TRUE
)
Arguments
- path_model
Character. Path to fitted
Hmsc
model object.- hab_abb
Character. Habitat abbreviation indicating the specific SynHab habitat type. Valid values:
0
,1
,2
,3
,4a
,4b
,10
,12a
,12b
. See Pysek et al. for details.- env_file
Character. Path to the environment file containing paths to data sources. Defaults to
.env
.- n_cores
Integer. Number of CPU cores to use for parallel processing. Default: 8.
- strategy
Character. The parallel processing strategy to use. Valid options are "sequential", "multisession" (default), "multicore", and "cluster". See
future::plan()
andecokit::set_parallel()
for details.- clamp_pred
Logical indicating whether to clamp the sampling efforts at a single value. If
TRUE
(default), thefix_efforts
argument must be provided.- fix_efforts
Numeric or character. When
clamp_pred = TRUE
, fixes the sampling efforts predictor at this value during predictions. If numeric, uses the value directly (on log10 scale). If character, must be one ofmedian
,mean
,max
, orq90
(90% quantile). Usingmax
may reflect extreme sampling efforts from highly sampled locations, whileq90
captures high sampling areas without extremes. Required ifclamp_pred = TRUE
.- fix_rivers
Numeric, character, or
NULL
. Similar tofix_efforts
, but for the river length predictor. IfNULL
, the river length is not fixed. Default:q90
.- pred_new_sites
Logical. Whether to predict suitability at new sites. Default:
TRUE
.- use_TF
Logical. Whether to use
TensorFlow
for calculations. Defaults toTRUE
.- TF_environ
Character. Path to the Python environment. This argument is required if
use_TF
isTRUE
under Windows. Defaults toNULL
.- TF_use_single
Logical. Whether to use single precision for the
TensorFlow
calculations. Defaults toFALSE
.- LF_n_cores
Integer. Number of cores to use for parallel processing of latent factor prediction. Defaults to 8L.
- LF_check
Logical. If
TRUE
, the function checks if the output files are already created and valid. IfFALSE
, the function will only check if the files exist without checking their integrity. Default isFALSE
.- LF_temp_cleanup
Logical. Whether to delete temporary files in the
temp_dir
directory after finishing the LF predictions.- LF_only
Logical. Whether to predict only the latent factor. This is useful for distributing processing load between GPU and CPU. When
LF_only = TRUE
, latent factor prediction needs to be computed separately on GPU. When computations are finished on GPU, the function can later be rerun withLF_only = FALSE
(default) to predict habitat suitability using the already-computed latent factor predictions.- LF_commands_only
Logical. If
TRUE
, returns the command to run the Python script. Default isFALSE
.- temp_dir
Character. Path for temporary storage of intermediate files.
- temp_cleanup
Logical. Whether to clean up temporary files. Defaults to
TRUE
.- tar_predictions
Logical. Whether to compress the add files into a single
*.tar
file (without compression). Default:TRUE
.- CC_models
Character vector. Climate models for future predictions. Available options are
c("GFDL-ESM4", "IPSL-CM6A-LR", "MPI-ESM1-2-HR", "MRI-ESM2-0", "UKESM1-0-LL")
(default).- CC_scenario
Character vector. Climate scenarios for future predictions. Available options are:
c("ssp126", "ssp370", "ssp585")
(default).- model_dir
Character. Path to the directory containing cross-validated models.
- CV_name
Character. Cross-validation strategy. Valid values are
CV_Dist
,CV_Large
, orCV_SAC
.- CV_fold
Integer. The cross-validation fold number.
Details
predict_maps
: Generates habitat suitability maps forHmsc
models fitted on the full dataset, for both current and future climate options. It produces maps for mean, standard deviation (sd), and coefficient of variation (cov) of suitability for each species and overall species richness. It evaluate model's explanatory power using various metrics. For future predictions, it also generates anomaly maps (future - current). The function supports ensemble predictions across multiple climate models and prepares data for upload to the OPeNDAP server for use in theIASDT
Shiny App.predict_maps_CV
: Computes predictions for cross-validatedHmsc
models using only the testing folds. It evaluates model performance (predictive power) with various metrics and plots evaluation results for predictive and explanatory power. Unlikepredict_maps
, this function does not perform clamping and does not generate future climate predictions.