Predicts habitat suitability of Hmsc
model across different climate options
Source: R/Mod_Predict_Maps.R
Predict_Maps.Rd
This function generates prediction maps of Hmsc
models for current and
future climate scenarios. It also predicts an ensemble predictions for
different climate models. For each species and overall species richness, the
function exports three maps: mean, standard deviation (sd), and coefficient
of variation (cov).
Usage
Predict_Maps(
Path_Model = NULL,
Hab_Abb = NULL,
EnvFile = ".env",
FromHPC = TRUE,
NCores = 8L,
Pred_Clamp = TRUE,
Fix_Efforts = "q90",
Fix_Rivers = "q90",
Pred_NewSites = TRUE,
UseTF = TRUE,
TF_Environ = NULL,
TF_use_single = FALSE,
LF_NCores = NCores,
LF_Check = FALSE,
LF_Temp_Cleanup = TRUE,
LF_Only = FALSE,
LF_Commands_Only = FALSE,
Temp_Dir = "TEMP_Pred",
Temp_Cleanup = TRUE,
CC_Models = c("GFDL-ESM4", "IPSL-CM6A-LR", "MPI-ESM1-2-HR", "MRI-ESM2-0",
"UKESM1-0-LL"),
CC_Scenario = c("ssp126", "ssp370", "ssp585")
)
Arguments
- Path_Model
Character. Path to fitted
Hmsc
model object.- Hab_Abb
Character. Habitat abbreviation indicating the specific SynHab habitat type for which data will be prepared. Valid values are
0
,1
,2
,3
,4a
,4b
,10
,12a
,12b
. For more details, see Pysek et al..- EnvFile
Character. Path to the environment file containing paths to data sources. Defaults to
.env
.- FromHPC
Logical indicating whether the work is being done from HPC, to adjust file paths accordingly. Default:
TRUE
.- NCores
Integer specifying the number of parallel cores for parallelization. Default: 8 cores.
- Pred_Clamp
Logical indicating whether to clamp the sampling efforts at a single value. Defaults to
TRUE
. IfTRUE
, theFix_Efforts
argument must be provided.- Fix_Efforts
Numeric or character. Defines the value to fix sampling efforts less than the provided value. If numeric, the value is directly used (log10 scale). If character, it can be
median
,mean
,max
, orq90
(q0% Quantile). Usingmax
can reflect extreme values caused by rare, highly sampled locations (e.g., urban centers or popular natural reserves). While using 90% quantile avoid such extreme grid cells while still capturing areas with high sampling effort. This argument is mandatory whenPred_Clamp
is set toTRUE
.- Fix_Rivers
Numeric or character. Similar to
Fix_Efforts
, but for fixing the length of rivers. If numeric, the value is directly used (log10 scale). If character, it can bemedian
,mean
,max
,q90
(90% quantile). It can be alsoNULL
for not fixing the river length predictor. Defaults toq90
.- Pred_NewSites
Logical indicating whether to predict habitat suitability at new sites. Default:
TRUE
. Note: This parameter is temporary and will be removed in future updates.- UseTF
Logical indicating whether to use TensorFlow for calculations. Defaults to TRUE.
- TF_Environ
Character string specifying the path to the Python environment. Defaults to NULL. This argument is required if
UseTF
is TRUE.- TF_use_single
Logical indicating whether to use single precision for the TF calculations. Defaults to
FALSE
.- LF_NCores
Integer specifying the number of cores to use for parallel processing. Defaults to 8.
- LF_Check
Logical. If TRUE, the function checks if the output files are already created and valid. If FALSE, the function will only check if the files exist without checking their integrity. Default is
FALSE
.- LF_Temp_Cleanup
Logical indicating whether to delete temporary files in the
Temp_Dir
after finishing the LF predictions.- LF_Only
Logical. Indicates whether to predict only the latent factor. Useful for distributing processing load between GPU and CPU. When
LF_Only = TRUE
, the latent factor prediction can be computed on the GPU. The function can then be rerun withLF_Only = FALSE
to predict habitat suitability using the predicted latent factor on the CPU. Default:FALSE
.- LF_Commands_Only
logical. If
TRUE
, returns the command to run the Python script. Default isFALSE
.- Temp_Dir
Character string specifying the path for temporary storage of intermediate files.
- Temp_Cleanup
logical, indicating whether to clean up temporary files. Defaults to
TRUE
.- CC_Models
Character vector. Specifies the climate models for future predictions. Default:
c("GFDL-ESM4", "IPSL-CM6A-LR", "MPI-ESM1-2-HR", "MRI-ESM2-0", "UKESM1-0-LL")
. Note: This parameter is temporary and may be removed in future updates.- CC_Scenario
Character vector. Specifies the climate scenarios for future predictions. Default:
c("ssp126", "ssp370", "ssp585")
. Note: This parameter is temporary and may be removed in future updates.