This function modifies the Hmsc:::predict.Hmsc
function.
Usage
Predict_Hmsc(
Path_Model,
Loff = NULL,
XData = NULL,
X = NULL,
XRRRData = NULL,
XRRR = NULL,
Gradient = NULL,
Yc = NULL,
mcmcStep = 1L,
expected = TRUE,
NCores = 8L,
Model_Name = "Train",
Temp_Dir = "TEMP_Pred",
Temp_Cleanup = TRUE,
RC = NULL,
UseTF = TRUE,
TF_Environ = NULL,
TF_use_single = FALSE,
LF_OutFile = NULL,
LF_Return = FALSE,
LF_InputFile = NULL,
LF_Only = FALSE,
LF_NCores = NCores,
LF_Check = FALSE,
LF_Temp_Cleanup = TRUE,
LF_Commands_Only = FALSE,
Pred_Dir = NULL,
Pred_PA = NULL,
Pred_XY = NULL,
Evaluate = FALSE,
Eval_Name = NULL,
Eval_Dir = "Evaluation",
Verbose = TRUE
)
Arguments
- Path_Model
character string specifying a file name where the model object is saved.
- XData
a dataframe specifying the unpreprocessed covariates for the predictions to be made. Works only if the
XFormula
argument was specified in the Hmsc::Hmsc model constructor call. Requirements are similar to those in theHmsc
model constructor.- X
a matrix specifying the covariates for the predictions to be made. Only one of
XData
andX
arguments may be provided.- XRRRData
a dataframe of covariates for reduced-rank regression.
- XRRR
a matrix of covariates for reduced-rank regression.
- Gradient
an object returned by Hmsc::constructGradient. Providing
Gradient
is an alternative for providingXData
,studyDesign
andranLevels
. Cannot be used together withYc
.- Yc
a matrix of the outcomes that are assumed to be known for conditional predictions. Cannot be used together with
Gradient
.- mcmcStep
the number of extra mcmc steps used for updating the random effects
- expected
boolean flag indicating whether to return the location parameter of the observation models or sample the values from those.
- NCores
Integer specifying the number of cores to use for parallel processing. Defaults to 8.
- Model_Name
Character string used as a prefix for temporary file names. Defaults to NULL, in which case no prefix is used.
- Temp_Dir
Character string specifying the path for temporary storage of intermediate files.
- Temp_Cleanup
logical, indicating whether to clean up temporary files. Defaults to
TRUE
.- RC
a character string specifying the type of predictions to be made. If
NULL
(default), predictions are made for the latent factors. Ifc
, predictions are made for response curves at mean coordinates. Ifi
, predictions are made for response curves at infinite coordinates.- UseTF
Logical indicating whether to use TensorFlow for calculations. Defaults to TRUE.
- TF_Environ
Character string specifying the path to the Python environment. Defaults to NULL. This argument is required if
UseTF
is TRUE.- TF_use_single
Logical indicating whether to use single precision for the TF calculations. Defaults to
FALSE
.- LF_OutFile
Character string specifying the path to save the outputs. If
NULL
(default), the predicted latent factors are not saved to a file. This should end with either*.qs2
or*.RData
.- LF_Return
Logical. Indicates if the output should be returned. Defaults to
FALSE
. IfLF_OutFile
isNULL
, this parameter cannot be set toFALSE
because the function needs to return the result if it is not saved to a file.- LF_InputFile
a character string specifying the file name where the latent factor predictions are saved. If
NULL
(default), latent factor predictions will be made. If specified, the latent factor predictions are read from the file. This allows to predicting the latent factors for new sites only once.- LF_Only
a logical flag indicating whether to return the latent factor predictions only. Defaults to
FALSE
. This helps in predicting to new sites, allowing to predicting the latent factors only once, then the output can be loaded in other predictions when needed.- LF_NCores
Integer specifying the number of cores to use for parallel processing. Defaults to 8.
- LF_Check
Logical. If TRUE, the function checks if the output files are already created and valid. If FALSE, the function will only check if the files exist without checking their integrity. Default is
FALSE
.- LF_Temp_Cleanup
Logical indicating whether to delete temporary files in the
Temp_Dir
after finishing the LF predictions.- LF_Commands_Only
logical. If
TRUE
, returns the command to run the Python script. Default isFALSE
.- Pred_Dir
a character string specifying the directory where the predictions will be saved. Defaults to
NULL
, which saves model predictions to "Model_Prediction" folder of the current working directory.- Pred_PA
a matrix of presence-absence data for evaluation. If
NULL
(default), the presence-absence data from the model object is used. This argument is used only whenEvaluate
isTRUE
.- Pred_XY
a matrix of coordinates to be added to predicted values. If
NULL
(default), the coordinates from the model object is used.- Evaluate
a logical flag indicating whether to evaluate the model predictions. Defaults to
FALSE
.- Eval_Name
a character string specifying the name of the evaluation results. If
NULL
, the default name is used (Eval_[Model_Name].qs2
).- Eval_Dir
a character string specifying the directory where the evaluation results will be saved. Defaults to
Evaluation
.- Verbose
Logical. If TRUE, detailed output is printed. Default is
FALSE
.