Prepare and plot response curve data for Hmsc models
Source:R/mod_resp_curv_prepare_data.R
, R/mod_resp_curv_plot_species.R
, R/mod_resp_curv_plot_species_all.R
, and 1 more
Response_curves.Rd
The RespCurv_*()
functions process and visualise response curves for Hmsc
models. They support parallel computation and optionally return processed
data. There are four functions in this group:
resp_curv_prepare_data()
: Prepares response curve data for analysisresp_curv_plot_species()
: Generates response curve plots for individual speciesresp_curv_plot_species_all()
: Generates response curves for all species together in a single plotresp_curv_plot_SR()
: Plots response curves for species richness.
Usage
resp_curv_prepare_data(
path_model = NULL,
n_grid = 50L,
n_cores = 8L,
strategy = "multisession",
return_data = FALSE,
probabilities = c(0.025, 0.5, 0.975),
use_TF = TRUE,
TF_environ = NULL,
TF_use_single = FALSE,
LF_n_cores = n_cores,
LF_check = FALSE,
LF_temp_cleanup = TRUE,
LF_commands_only = FALSE,
temp_dir = "TEMP_Pred",
temp_cleanup = TRUE,
verbose = TRUE
)
resp_curv_plot_species(
model_dir = NULL,
n_cores = 20,
env_file = ".env",
return_data = FALSE
)
resp_curv_plot_species_all(
model_dir = NULL,
n_cores = 8L,
strategy = "multisession",
return_data = FALSE,
plotting_alpha = 0.3
)
resp_curv_plot_SR(
model_dir,
verbose = TRUE,
n_cores = 8L,
strategy = "multisession"
)
Arguments
- path_model
Character. Path to the file containing the fitted Hmsc model.
- n_grid
Integer. Number of points along the gradient for continuous focal variables. Higher values result in smoother curves. Default: 50. See Hmsc::constructGradient for details.
- n_cores
Integer. Number of CPU cores to use for parallel processing. Defaults to 8L for all functions, except for
resp_curv_plot_species
, in which it defaults to 20L.- strategy
Character. The parallel processing strategy to use. Valid options are "sequential", "multisession" (default), "multicore", and "cluster". See
future::plan()
andecokit::set_parallel()
for details.- return_data
Logical. If
TRUE
, the function returns processed data as an R object. Default:FALSE
.- probabilities
Numeric vector. Quantiles to calculate in response curve predictions. Default:
c(0.025, 0.5, 0.975)
. See stats::quantile for details.- use_TF
Logical. Whether to use
TensorFlow
for calculations. Defaults toTRUE
.- TF_environ
Character. Path to the Python environment. This argument is required if
use_TF
isTRUE
under Windows. Defaults toNULL
.- TF_use_single
Logical. Whether to use single precision for the
TensorFlow
calculations. Defaults toFALSE
.- LF_n_cores
Integer. Number of cores to use for parallel processing of latent factor prediction. Defaults to 8L.
- LF_check
Logical. If
TRUE
, the function checks if the output files are already created and valid. IfFALSE
, the function will only check if the files exist without checking their integrity. Default isFALSE
.- LF_temp_cleanup
Logical. Whether to delete temporary files in the
temp_dir
directory after finishing the LF predictions.- LF_commands_only
Logical. If
TRUE
, returns the command to run the Python script. Default isFALSE
.- temp_dir
Character. Path for temporary storage of intermediate files.
- temp_cleanup
Logical. Whether to clean up temporary files. Defaults to
TRUE
.- verbose
Logical. Whether to print a message upon successful saving of files. Defaults to
FALSE
.- model_dir
Character. Path to the root directory containing fitted models. The function reads data from the
RespCurv_DT
subdirectory, which is created byresp_curv_prepare_data
.- env_file
Character. Path to the environment file containing paths to data sources. Defaults to
.env
.- plotting_alpha
Numeric. Opacity level for response curve lines (0 = fully transparent, 1 = fully opaque). Default: 0.3.