Computes and visualise variance partitioning of Hmsc models
Source:R/mod_variance_partitioning_compute.R
, R/mod_variance_partitioning_plot.R
Variance_partitioning.Rd
The variance_partitioning_compute()
function computes variance
components with respect to given grouping of fixed effects and levels of
random effects. This function inherits the main functionality from the
Hmsc::computeVariancePartitioning
function, but with the added
functionality of parallel computation and using TensorFlow
.
The
variance_partitioning_plot()
function generates plots for variance
partitioning as JPEG files. It allows for sorting the predictors and species;
e.g., by the mean value per predictor; and by original species order. It also
plots the raw variance partitioning (relative variance partitioning
multiplied by the Tjur-R2 value).
Usage
variance_partitioning_compute(
path_model,
group = NULL,
group_names = NULL,
start = 1L,
na.ignore = FALSE,
n_cores = 8L,
use_TF = TRUE,
TF_environ = NULL,
TF_use_single = FALSE,
temp_cleanup = TRUE,
chunk_size = 50L,
verbose = TRUE,
VP_file = "VarPar",
VP_commands_only = FALSE
)
variance_partitioning_plot(
path_model,
env_file = ".env",
VP_file = "VarPar",
use_TF = TRUE,
TF_environ = NULL,
n_cores = 1L,
strategy = "multisession",
width = 30,
height = 15,
Axis_text = 4
)
Arguments
- path_model
Character. Path to fitted
Hmsc
model object.- group
vector of numeric values corresponding to group identifiers in groupnames. If the model was defined with
XData
andXFormula
, the default is to use model terms.- group_names
vector of names for each group of fixed effect. Should match
group
. If the model was defined withXData
andXFormula
, the default is to use the labels of model terms.- start
index of first MCMC sample included. Default:
1L
.- na.ignore
Logical. If
TRUE
, covariates are ignored for sites where the focal species is NA when computing variance-covariance matrices for each species.- n_cores
Integer. Number of CPU cores to use for computing variance partitioning using
TensorFlow
. This is only effective whenuse_TF
isTRUE
. Default:1
.- use_TF
Logical. Whether to use
TensorFlow
for calculations. Defaults toTRUE
.- TF_environ
Character. Path to the Python environment. This argument is required if
use_TF
isTRUE
under Windows. Defaults toNULL
.- TF_use_single
Logical. Whether to use single precision for the
TensorFlow
calculations. Defaults toFALSE
.- temp_cleanup
Logical. Whether to delete temporary files after processing. Default:
TRUE
.- chunk_size
Integer. Size of each chunk of samples to process in parallel. Only relevant for
TensorFlow
. Default:50
.- verbose
Logical. Whether to print progress messages. Default:
TRUE
.- VP_file
Character. Name of the output file to save the results. Default:
VarPar
.- VP_commands_only
Logical. If
TRUE
, returns the commands to run the Python script. Default isFALSE
. Only relevant whenuse_TF
isTRUE
.- env_file
Character. Path to the environment file containing paths to data sources. Defaults to
.env
.- strategy
Character. The parallel processing strategy to use. Valid options are "sequential", "multisession" (default), "multicore", and "cluster". See
future::plan()
andecokit::set_parallel()
for details.- width, height
Numeric. Width and height of the output plot in centimetres. Default:
30
and15
, respectively.- Axis_text
Numeric. Size of the axis text. Default:
4
.