Skip to contents

RecordArgs() is a utility function that captures and records the evaluated forms of arguments passed to the parent function. It returns a tibble with columns named after the arguments, containing their evaluated values only.

Usage

RecordArgs(ExportPath = NULL)

Arguments

ExportPath

Character. The path to an .RData file where the output tibble will be exported. If NULL (default), the tibble is returned without saving. If provided, the tibble is saved to the specified file and NULL is returned invisibly.

Value

A tibble containing the evaluated forms of the parent function’s arguments and any additional named arguments passed via ..., with columns named after the arguments (e.g., w, x, y, extra1). Evaluated values are presented as scalars (e.g., 8) or list columns for complex objects (e.g., <SpatRaster>). If ExportPath is provided, the tibble is saved to the specified .RData file and NULL is returned invisibly.

Details

This function evaluates all arguments in the grandparent environment (two frames up), with a fallback to the global environment if evaluation fails. This ensures correct evaluation in iterative contexts like lapply. It handles:

  • Scalars (e.g., numbers, strings) as single values.

  • Multi-element vectors or complex objects (e.g., SpatRaster) as list columns.

  • NULL values are converted to the string "NULL".

  • Failed evaluations result in NA.

  • Additional named arguments passed via ... in the parent function are also recorded.

The function must be called from within another function, as it relies on sys.call(-1) to capture the parent call.

Author

Ahmed El-Gabbas

Examples

a <- 5
b <- 3
w_values <- 1:3
x_values <- c(a + b, 10, 15)
y_values <- c("ABCD", "XYZ123", "TEST")

Function1 <- function(w = 5, x, y, z = c(1, 2), ...) {
  Args <- RecordArgs()
  return(Args)
}

# ----------------------------------------------------

# Example 1: Simple function call with scalar and expression
Function1(x = a + b, y = 2)
#> # A tibble: 1 × 4
#>       w     x     y z        
#>   <dbl> <dbl> <dbl> <list>   
#> 1     5     8     2 <dbl [2]>

# ----------------------------------------------------

# Example 2: Using lapply with indexed arguments

lapply(
  X = 1:3,
  FUN = function(Z) {
    Function1(
      w = w_values[Z],
      x = x_values[Z],
      y = stringr::str_extract(y_values[Z], "B.+$"),
      z = Z)
}) %>%
dplyr::bind_rows() %>%
print()
#> # A tibble: 3 × 4
#>       w     x y         z
#>   <int> <dbl> <chr> <int>
#> 1     1     8 BCD       1
#> 2     2    10 NA        2
#> 3     3    15 NA        3

# ----------------------------------------------------

# Example 3: Using pmap with mixed argument types
purrr::pmap(
  .l = list(w = w_values, x = x_values, y = y_values),
  .f = function(w, x, y) {
    Function1(
      w = w,
      x = x,
      y = stringr::str_extract(y, "B.+$"),
      z = terra::rast(system.file("ex/elev.tif", package = "terra")))
  }) %>%
  dplyr::bind_rows() %>%
  print()
#> # A tibble: 3 × 4
#>       w     x y     z         
#>   <int> <dbl> <chr> <list>    
#> 1     1     8 BCD   <PckdSptR>
#> 2     2    10 NA    <PckdSptR>
#> 3     3    15 NA    <PckdSptR>

# ----------------------------------------------------

# Example 4: Using additional arguments via ...
Function1(x = a + b, y = "test", extra1 = "hello", extra2 = 42)
#> # A tibble: 1 × 6
#>       w     x y     z         extra1 extra2
#>   <dbl> <dbl> <chr> <list>    <chr>   <dbl>
#> 1     5     8 test  <dbl [2]> hello      42