This function evaluates Hmsc models trained via cross-validation using. It merges posterior chains, makes predictions, and computes 4 evaluation metrics: AUC, RMSE, Tjur's R2, and Boyce Index.
Arguments
- Path_CV
Character. The directory path where cross-validation models and outputs are stored.
- predictEtaMean
boolean flag indicating whether to use the estimated mean values of posterior predictive distribution for random effects corresponding for the new units. See
Hmsc:::predict.Hmsc
for more details.- NCores
Integer specifying the number of parallel cores for parallelization. Default: 8 cores.