This function generates plots for the variance partitioning of an Hmsc model. It can optionally compute the variance partitioning if not available on disk, supporting parallel computation and using TensorFlow; see VarPar_Compute. It plots the relative variance partitioning sorted by the mean value per predictor or by the original species order. It also plots the raw variance partitioning (relative variance partitioning multiplied by the Tjur-R^2 value). The plots are saved as JPEG files.
Usage
VarPar_Plot(
Path_Model,
EnvFile = ".env",
VarParFile = NULL,
FromHPC = TRUE,
UseTF = TRUE,
TF_Environ = NULL,
NCores = 1,
Fig_width = 30,
Fig_height = 15,
axis_text = 4
)
Arguments
- Path_Model
Character path for the model file.
- EnvFile
String. Path to read the environment variables. Default value:
.env
- VarParFile
Character. Name of the output file to save the results.
- FromHPC
Logical. Indicates whether the function is being run on an HPC environment, affecting file path handling. Default:
TRUE
.- UseTF
Logical indicating whether to use TensorFlow for calculations. Defaults to TRUE.
- TF_Environ
Character string specifying the path to the Python environment. Defaults to NULL. This argument is required if
UseTF
is TRUE.- NCores
Integer. Number of parallel computations for computing variance partitioning using TensorFlow. See VarPar_Compute for more details. Default:
1
.- Fig_width, Fig_height
Numeric. Width and height of the output plot in centimeters. Default:
30
and15
, respectively.- axis_text
Numeric. Size of the axis text. Default:
4
.